Optimal emission reductions pathway for polybrominated diphenyl ethers in typical household e-waste dismantling products

Yongze Li,Yuchen Yang, Yazhou Tang,Xinyi Dang,Kai Zhou,Bo Liu,Bo Bian

Science of The Total Environment(2023)

引用 1|浏览5
暂无评分
摘要
Waste printed circuit boards (WPCBs) and waste epoxy resin powder (WERP) generated after crushing are the most crucial hazardous materials in the recycling process of household e-waste. In this study, a sustainable treatment approach was established in response to the drawbacks of traditional treatment methods. The baseline and hypothetical scenarios were as follows: (1) scenario 1 (S1): WPCBs mechanical treatment, WERP safe landfill; (2) scenario 2 (S2): WPCBs mechanical treatment, WERP imitation stone bricks production. Based on the material flow analysis and comprehensive evaluation, the most profitable and environmentally friendly scenario was selected and assumed to be promoted in Jiangsu area and China from 2013 to 2029. The analysis result showed that S2 had the best economic performance and polybrominated diphenyl ethers (PBDEs) emission reductions potential. S2 is the best option that can gradually replace the traditional recycling model. With the promotion of S2, China would reduce the emissions of PBDEs by 700.8 kg. Meanwhile, it could save $542.2 million in WERP landfill costs, produce 1260.2 kt of imitation stone bricks, and generate $2308.5 million in economic benefits. In conclusion, this study can offer a new idea for dismantling products treatment of household e-waste and provide scientific knowledge to improve the sustainable management.
更多
查看译文
关键词
Household e-waste,Imitation stone bricks production,Mechanical treatment,Polybrominated diphenyl ethers
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要