Confirmation of the standard cosmological model from red massive galaxies $\sim600$ Myr after the Big Bang

arXiv (Cornell University)(2023)

引用 3|浏览16
暂无评分
摘要
In their recent study, Labb\'e et al. used multi-band infrared images captured by the James Webb Space Telescope (JWST) to discover a population of red massive galaxies that formed approximately 600 million years after the Big Bang. The authors reported an extraordinarily large density of these galaxies, with stellar masses exceeding $10^{10}$ solar masses, which, if confirmed, challenges the standard cosmological model as suggested by recent studies. However, this conclusion is disputed. We contend that during the early epochs of the universe the stellar mass-to-light ratio could not have reached the values reported by Labb\'e et al. A model of galaxy formation based on standard cosmology provides support for this hypothesis, predicting the formation of massive galaxies with higher ultraviolet (UV) luminosity, which produce several hundred solar masses of stars per year and containing significant dust. These forecasts are consistent with the abundance of JWST/HST galaxies selected photometrically in the rest-frame UV wavelengths and with the properties of the recent spectroscopically-confirmed JWST/HST galaxies formed during that era. Discrepancies with Labb\'e et al. may arise from overestimation of the stellar masses, systematic uncertainties, absence of JWST/MIRI data, heavy dust extinction affecting UV luminosities, or misidentification of faint red AGN galaxies at closer redshifts. The current JWST/HST results, combined with a realistic galaxy formation model, provide strong confirmation of the standard cosmology.
更多
查看译文
关键词
standard cosmological model,galaxies,big bang
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要