Inorganic wide-bandgap perovskite subcells with dipole bridge for all-perovskite tandems

Nature Energy(2023)

引用 24|浏览44
暂无评分
摘要
Operating stability has become a priority issue for all-perovskite tandem solar cells. Inorganic CsPbI 3− x Br x perovskites, which have good photostability against halide segregation, are promising alternatives for all-perovskite tandem solar cells. However, the interface between organic transport layers and inorganic perovskite suffers from a large energetic mismatch and inhibits charge extraction compared with hybrid analogues, resulting in low open-circuit voltages and fill factors. Here we show that inserting at this interface a passivating dipole layer having high molecular polarity—a molecule that interacts strongly with both inorganic perovskite and C 60 —reduces the energetic mismatch and accelerates the charge extraction. This strategy resulted in a power conversion efficiency (PCE) of 18.5% in wide-bandgap (WBG) devices. We report all-perovskite tandems using an inorganic WBG subcell, achieving a PCE of 25.6% (steady state 25.2%). Encapsulated tandems retain 96% of their initial performance after 1,000 h of simulated 1-sun operation at the maximum power point.
更多
查看译文
关键词
Devices for energy harvesting,Solar cells,Energy,general,Energy Policy,Economics and Management,Energy Systems,Energy Storage,Renewable and Green Energy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要