Sevenfold variation in global feeding capacity depends on diets, land use and nitrogen management

Nature Food(2023)

引用 4|浏览0
暂无评分
摘要
Harvested food carries a fraction of the nitrogen applied through fertilization; the remainder is typically lost into the environment, impairing planetary sustainability. Using a global agriculture model that integrates key drivers of food production and nitrogen cycling, we simulated upper bounds to global feeding capacity—and associated nitrogen pollution—as a function of nitrogen limitation under organic and industrial fertilization regimes. We found that the current agricultural area could feed ~8–20 billion people under unconstrained industrial fertilization and ca. 3–14 billion under organic fertilization. These ranges are inversely correlated with animal proteins in human diets, and are a function of feed–food competition, grassland-to-cropland allocation and—in the case of organic fertilization—nitrogen use efficiency. Improved nitrogen use efficiency is required to bring nitrogen pollution within planetary sustainability limits and is also essential in narrowing down food productivity gaps between organic and industrial fertilization regimes.
更多
查看译文
关键词
Agriculture,Environmental impact,Sustainability,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要