Long-term adherent cell dynamics emerging from energetic and frictional interactions at the interface.

Physical review. E(2023)

引用 2|浏览6
暂无评分
摘要
Cell adhesion plays an important role in a wide range of biological situations, including embryonic development, cancer invasion, and wound healing. Although several computational models describing adhesion dynamics have been proposed, models applicable to long-term, large-length-scale cell dynamics are lacking. In this study we investigated possible states of long-term adherent cell dynamics in three-dimensional space by constructing a continuum model of interfacial interactions between adhesive surfaces. In this model a pseudointerface is supposed between each pair of triangular elements that discretize cell surfaces. By introducing a distance between each pair of elements, the physical properties of the interface are given by interfacial energy and friction. The proposed model was implemented into the model of a nonconservative fluid cell membrane where the cell membrane dynamically flows with turnover. Using the implemented model, numerical simulations of adherent cell dynamics on a substrate under flow were performed. The simulations not only reproduced the previously reported dynamics of adherent cells, such as detachment, rolling, and fixation on the substrate, but also discovered other dynamic states, including cell slipping and membrane flow patterns, corresponding to behaviors that occur on much longer timescales than the dissociation of adhesion molecules. These results illustrate the variety of long-term adherent cell dynamics, which are more diverse than the short-term ones. The proposed model can be extended to arbitrarily shaped membranes, thus being useful for the mechanical analysis of a wide range of long-term cell dynamics where adhesion is essential.
更多
查看译文
关键词
frictional interactions,dynamics,cell,long-term
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要