WNK1 promotes water homeostasis by acting as a central osmolality sensor for arginine vasopressin release.

The Journal of clinical investigation(2023)

引用 1|浏览1
暂无评分
摘要
Maintaining internal osmolality constancy is essential for life. Release of arginine vasopressin (AVP) responding to hyperosmolality is critical. Current hypotheses for osmolality sensors in circumventricular organs of the brain (CVOs) focus on mechanosensitive membrane proteins. The present study demonstrated that an intracellular protein kinase WNK1 was involved. Focusing on vascular-organ-of-lamina-terminalis (OVLT) nuclei, we showed that WNK1 kinase was activated by water restriction. Neuronal-specific knockout (cKO) of Wnk1 caused polyuria with decreased urine osmolality that persisted in water restriction and blunted water restriction-induced AVP release. Wnk1-cKO also blunted mannitol-indued AVP release but had no effect on osmotic thirst response. The role of WNK1 in the osmosensory neurons in CVOs was supported by neuronal pathway tracing. Hyperosmolality-induced increases in action potential firing in OVLT neurons was blunted by Wnk1 deletion or pharmacological WNK inhibitors. Knockdown of Kv3.1 channel in OVLT by shRNA reproduced the phenotypes. Thus, WNK1 in osmosensory neurons in CVOs detects extracellular hypertonicity and mediates the increase in AVP release by activating Kv3.1 and increasing action potential firing from osmosensory neurons.
更多
查看译文
关键词
Endocrinology,Epithelial transport of ions and water,Ion channels,Nephrology,Transport
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要