Towards accurate field-level inference of massive cosmic structures

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY(2024)

引用 0|浏览9
暂无评分
摘要
We investigate the accuracy requirements for field-level inference of cluster and void masses using data from galaxy surveys. We introduce a two-step framework that takes advantage of the fact that cluster masses are determined by flows on larger scales than the clusters themselves. First, we determine the integration accuracy required to perform field-level inference of cosmic initial conditions on these large scales by fitting to late-time galaxy counts using the Bayesian Origin Reconstruction from Galaxies (BORG) algorithm. A 20-step COLA integrator is able to accurately describe the density field surrounding the most massive clusters in the local super-volume (< 135 h(-1 )Mpc), but does not by itself lead to converged virial mass estimates. Therefore, we carry out 'posterior resimulations', using full N-body dynamics while sampling from the inferred initial conditions, and thereby obtain estimates of masses for nearby massive clusters. We show that these are in broad agreement with existing estimates, and find that mass functions in the local super-volume are compatible with Lambda CDM.
更多
查看译文
关键词
methods: data analysis,large-scale structure of Universe,cosmology: theory
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要