Hydrolysis Mechanism Analysis of (Ca, Sr)AlSiN₃:Eu²⁺ Red Phosphor Aged Under Pressure Cooker Test and 85°C&85%RH Test: Kinetics Modeling and First-principles Calculation

2023 24th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)(2023)

引用 0|浏览12
暂无评分
摘要
The (Ca, Sr) AlSiN₃:Eu²⁺(CSASN:Eu) red phosphor is widely used to improve color rendering of high-power phosphor-converted lighting diode (pc-WLED), but it is always unstable under high temperature and high humidity environments. Therefore, the studies on the temperature and humidity resistance of red phosphors and their aging mechanism have become essential to evaluate its reliability in harsh applications. In this paper, the pressure cooker test (PCT) and 85°C&85% RH aging test were carried out for the CSASN:Eu red phosphors. And, its hydrolysis reaction-driven degradation mechanism was simulated and analyzed based on first-principle calculation, in which the optimized adsorption of simplified CaAlSiN 3 (CASN) and H 2 O was simulated based on Density Function Theory (DFT) and the specific aging process was analyzed by the charge density difference and ab initio molecular dynamics (AIMD). The experimental results showed that the photoluminescence performance of CSASN:Eu red phosphor dropped gradually and finally disappeared under PCT aging, and its temperature-dependent degradation kinetics followed the Arrhenius model well. Meanwhile, the simulation results indicate that the CASN, reacted with H 2 O when the H atoms had a tendency to approach N atoms. Both the temperature and humidity could accelerate the hydrolysis reaction rate.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要