Shifting from a thermal-constrained to water-constrained ecosystem over the Tibetan Plateau

Frontiers in Plant Science(2023)

引用 0|浏览11
暂无评分
摘要
IntroductionUnderstanding the seasonality of vegetation growth is important for maintaining sustainable development of grassland livestock systems over the Tibetan Plateau (TP). Current knowledge of changes in the seasonality of TP grasslands is restricted to spring and autumn phenology, with little known about the date of peak vegetation growth, the most relevant quantity for grassland productivity.MethodsWe investigate the shifts of the date of peak vegetation growth and its climatic controls for the alpine grasslands over the TP during 2001–2020 using a framework based on the law of minimum, which is based on the assumption that peak vegetation growth would be consistent with the peak timing of the most limiting climatic resource.ResultsThe date of peak vegetation growth over the TP advanced by 0.81 days decade-1 during 2001–2020. This spring-ward shift mainly occurs in the semi-humid eastern TP, where the peak growth date tracks the advancing peak precipitation, and shifted towards the timing of peak temperature. The advancing peak growth over the eastern TP significantly stimulated the ecosystem production by 1.99 gCm-2 year-1 day-1 during 2001–2020, while this positive effect weakened from 3.02 gCm-2 year-1 day-1 during 2000s to 1.25 gCm-2 year-1 day-1 during 2010s.DiscussionOur results highlighted the importance of water availability in vegetation growth over the TP, and indicated that the TP grassland is moving towards a tipping point of transition from thermal-constrained to water-constrained ecosystem under the rapid warming climate.
更多
查看译文
关键词
date of peak vegetation growth,climate constraint,alpine grassland,Tibetan Plateau,ecosystem production
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要