Investigation of the mechanism of different 3D printing performance of starch and whole flour gels from tuber crops.

International journal of biological macromolecules(2023)

引用 7|浏览13
暂无评分
摘要
This study aims to reveal the variation in 3D printing performance of whole flour and starch gels as derived from different varieties of tuber crops including cassava, potato, and yam, along with its mechanism. The whole flour of the same tuber crops showed a higher branching degree, average molecular weight (R¯h), and the proportion of AM chains for 100 < X ≤ 1000 than its starch. Due to the higher degree of branching, the crystallinity of whole flour reached a higher level. In this circumstance, G2' of the dispersion system decreased, which facilitated smooth extrusion of ink from the nozzle, thus improving the precision of printing for the final product. Besides, a higher R¯h and the percentage of AM chains for 100 < X ≤ 1000 made it easier for the material to extrude, thus enhancing the printing accuracy of the product. The higher short-range ordered structure of whole flour also enhanced the printing performance of 3D printed products. This research contributes an effective solution to the selection of starch and whole flour for food 3D printing.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要