Publicly Verifiable Deletion from Minimal Assumptions

THEORY OF CRYPTOGRAPHY, TCC 2023, PT IV(2023)

引用 0|浏览2
暂无评分
摘要
We present a general compiler to add the publicly verifiable deletion property for various cryptographic primitives including public key encryption, attribute-based encryption, and quantum fully homomorphic encryption. Our compiler only uses one-way functions, or more generally hard quantum planted problems for NP, which are implied by one-way functions. It relies on minimal assumptions and enables us to add the publicly verifiable deletion property with no additional assumption for the above primitives. Previously, such a compiler needs additional assumptions such as injective trapdoor one-way functions or pseudorandom group actions [Bartusek-Khurana-Poremba, CRYPTO 2023]. Technically, we upgrade an existing compiler for privately verifiable deletion [Bartusek-Khurana, CRYPTO 2023] to achieve publicly verifiable deletion by using digital signatures.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要