LabEmbryoCam: An opensource phenotyping system for developing aquatic animals

Ziad Ibbini, Maria Bruning, Sakina Allili,Luke A Holmes, Ellen Tully, Jamie McCoy,John I. Spicer,Oliver Tills

bioRxiv (Cold Spring Harbor Laboratory)(2023)

引用 0|浏览2
暂无评分
摘要
Phenomics is the acquisition of high-dimensional data on an individual-wide scale and is proving transformational in areas of biological research related to human health including medicine and the crop sciences. However, more broadly, a lack of available transferrable technologies and research approaches is significantly hindering the uptake of phenomics, in contrast to molecular-omics for which transferrable technologies have been a significant enabler. Aquatic embryos are natural models for phenomics, due to their small size, taxonomic diversity, ecological relevance, and high levels of temporal, spatial and functional change. Here, we present LabEmbryoCam, an autonomous phenotyping platform for timelapse imaging of developing aquatic embryos cultured in a multiwell plate format. The LabEmbryoCam capitalises on 3D printing, single board computers, consumer electronics and stepper motor enabled motion. These provide autonomous X, Y and Z motion, a web application streamlined for rapid setup of experiments, user email notifications and a humidification chamber to reduce evaporation over prolonged acquisitions. Downstream analyses are provided, enabling automated embryo segmentation, heartbeat detection, motion tracking, and energy proxy trait (EPT) measurement. LabEmbryoCam is a scalable, and flexible laboratory instrument, that leverages embryos and early life stages to tackle key global challenges including biological sensitivity assessment, toxicological screening and broader engagement with the earliest stages of life. View this table: ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
关键词
aquatic animals
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要