Yeast Puf3p-mediated mRNA decay is regulated by carbon source-specific differential interaction of Puf3p with Pop2p and Yak1p.

Ariel S Bulmash,Anthony D Fischer, Joseph Russo, Shayna M Mueller,Wendy M Olivas

FEBS letters(2023)

引用 0|浏览1
暂无评分
摘要
Puf3p regulates the stability of nuclear-encoded mRNAs acting in mitochondrial biogenesis and function in Saccharomyces cerevisiae. This work identifies the phosphorylation of Pop2p, a component of the deadenylase complex, as being critical for adapting Puf3p-mediated mRNA decay upon carbon source alterations. We demonstrate that the Puf3p-Pop2p association diminishes in mitochondria-reliant conditions and establish Yak1p, a kinase that phosphorylates Pop2p at threonine 97, as a new player in Puf3p-mediated regulation of mRNA decay. Yak1p deletion alters the half-life of Puf3p target mRNAs. Our findings outline a metabolism-driven regulatory switch, whereby, in mitochondria-independent conditions, Puf3p recruits Pop2p and the decay machinery to bound mRNAs for rapid decay. Conversely, in mitochondria-reliant conditions, the association of Puf3p with Yak1p increases, placing Yak1p proximal to neighboring Pop2p. Subsequent Pop2p phosphorylation reduces the Puf3p-Pop2p interaction and stabilizes Puf3p target mRNAs.
更多
查看译文
关键词
Pop2p,Puf proteins,RNA decay,Yak1p,mitochondrial regulation,post-transcriptional regulation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要