Targeting the RhoA-GEF-H1 pathway of mast cells attenuates experimental airway allergy.

Archives of biochemistry and biophysics(2023)

引用 0|浏览8
暂无评分
摘要
Mast cells are the major effector cells in allergic diseases. RhoA and its downstream pathway is associated with the pathogenesis of airway allergy. The objective of this study is to test a hypothesis that modulating the RhoA-GEF-H1 axis in mast cells can attenuate airway allergy. An airway allergic disorder (AAD) mouse model was employed. Mast cells were isolated from AAD mouse airway tissues to be analyzed by RNA sequencing. We observed that mast cells isolated from the respiratory tract of AAD mice were resistant to apoptosis. Mast cell mediator levels in nasal lavage fluid were correlated with apoptosis resistance in AAD mice. Activation of RhoA in AAD mast cells was related to resistance to apoptosis. Mast cells isolated from the airway tissues in AAD mouse exhibited strong RhoA-GEF-H1 expression. The RhoA-GEF-H1 axis was associated with the lower FasL expression in AAD mast cells. Activation of the RhoA-GEF-H1 axis promoted the production of mediators in mast cells. Inhibition of GEF-H1 facilitated the SIT-induced mast cell apoptosis and enhanced the therapeutic efficacy of AAD. In conclusion, RhoA-GEF-H1 activities are associated with resistance to apoptosis in mast cells isolated from sites of allergic lesions. The state of apoptosis resistance in mast cells is associated with the state of AAD disease. Inhibition of GEF-H1 restores the sensitivity of mast cells to apoptosis inducers, and alleviates experimental AAD in mice.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要