Macrophage Membrane-Camouflaged Responsive Polymer Nanogels Enable Magnetic Resonance Imaging-Guided Chemotherapy/Chemodynamic Therapy of Orthotopic Glioma

ACS NANO(2021)

引用 76|浏览15
暂无评分
摘要
Development of innovative nanomedicine formulations to traverse the blood-brain barrier (BBB) for effective theranostics of glioma remains a great challenge. Herein, we report the creation of macrophage membrane-camouflaged multifunctional polymer nanogels coloaded with manganese dioxide (MnO2) and cisplatin for magnetic resonance (MR) imaging-guided chemotherapy/chemodynamic therapy (CDT) of orthotopic glioma. Redox-responsive poly(N-vinylcaprolactam) (PVCL) nanogels (NGs) formed via precipitation polymerization were in situ loaded with MnO2 and physically encapsulated with cisplatin to have a mean size of 106.3 nm and coated with macrophage membranes to have a good colloidal stability. The generated hybrid NGs display dual pH-and redox-responsive cisplatin and Mn(II) release profiles and can deplete glutathione (GSH) rich in tumor microenvironment through reaction with disulfide-containing cross-linkers within the NGs and MnO2. The thus created Mn(II) enables enhanced CDT through a Fenton-like reaction and T-1-weighted MR imaging, while the loaded cisplatin not only exerts its chemotherapy effect but also promotes the reactive oxygen species generation to enhance the CDT efficacy. Importantly, the macrophage membrane coating rendered the hybrid NGs with prolonged blood circulation time and ability to traverse BBB for specific targeted chemotherapy/CDT of orthotopic glioma. Our study demonstrates a promising self-adaptive and cooperative NG-based nanomedicine platform for highly efficient theranostics of glioma, which may be extended to tackle other difficult cancer types.
更多
查看译文
关键词
macrophage membrane, PVCL nanogels, manganese dioxide, blood-brain barrier, enhanced chemodynamic therapy, chemotherapy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要