Development and validation of ‘Patient Optimizer’ (POP) algorithms for predicting surgical risk with machine learning

Gideon Kowadlo, Yoel Mittelberg,Milad Ghomlaghi, Daniel K. Stiglitz,Kartik Kishore, Ranjan Guha, Justin Nazareth,Laurence Weinberg

BMC Medical Informatics and Decision Making(2024)

引用 0|浏览0
暂无评分
摘要
Pre-operative risk assessment can help clinicians prepare patients for surgery, reducing the risk of perioperative complications, length of hospital stay, readmission and mortality. Further, it can facilitate collaborative decision-making and operational planning. To develop effective pre-operative risk assessment algorithms (referred to as Patient Optimizer or POP) using Machine Learning (ML) that predict the development of post-operative complications and provide pilot data to inform the design of a larger prospective study. After institutional ethics approval, we developed a base model that encapsulates the standard manual approach of combining patient-risk and procedure-risk. In an automated process, additional variables were included and tested with 10-fold cross-validation, and the best performing features were selected. The models were evaluated and confidence intervals calculated using bootstrapping. Clinical expertise was used to restrict the cardinality of categorical variables (e.g. pathology results) by including the most clinically relevant values. The models were created with logistic regression (LR) and extreme gradient-boosted trees using XGBoost (Chen and Guestrin, 2016). We evaluated performance using the area under the receiver operating characteristic curve (AUROC) and the area under the precision-recall curve (AUPRC). Data was obtained from a metropolitan university teaching hospital from January 2015 to July 2020. Data collection was restricted to adult patients undergoing elective surgery. A total of 11,475 adult admissions were included. The performance of XGBoost and LR was very similar across endpoints and metrics. For predicting the risk of any post-operative complication, kidney failure and length-of-stay (LOS), POP with XGBoost achieved an AUROC (95
更多
查看译文
关键词
Post-operative complications,Pre-operative care,Risk prediction,Risk assessment,Machine learning
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要