Explainable machine learning predictions of perceptual sensitivity for retinal prostheses

JOURNAL OF NEURAL ENGINEERING(2024)

引用 1|浏览5
暂无评分
摘要
Objective. Retinal prostheses evoke visual precepts by electrically stimulating functioning cells in the retina. Despite high variance in perceptual thresholds across subjects, among electrodes within a subject, and over time, retinal prosthesis users must undergo 'system fitting', a process performed to calibrate stimulation parameters according to the subject's perceptual thresholds. Although previous work has identified electrode-retina distance and impedance as key factors affecting thresholds, an accurate predictive model is still lacking. Approach. To address these challenges, we (1) fitted machine learning models to a large longitudinal dataset with the goal of predicting individual electrode thresholds and deactivation as a function of stimulus, electrode, and clinical parameters ('predictors') and (2) leveraged explainable artificial intelligence (XAI) to reveal which of these predictors were most important. Main results. Our models accounted for up to 76% of the perceptual threshold response variance and enabled predictions of whether an electrode was deactivated in a given trial with F1 and area under the ROC curve scores of up to 0.732 and 0.911, respectively. Our models identified novel predictors of perceptual sensitivity, including subject age, time since blindness onset, and electrode-fovea distance. Significance. Our results demonstrate that routinely collected clinical measures and a single session of system fitting might be sufficient to inform an XAI-based threshold prediction strategy, which has the potential to transform clinical practice in predicting visual outcomes.
更多
查看译文
关键词
retinal prostheses,perceptual thresholds,electrode deactivation,explainable AI,Argus II
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要