Metabolite Cross-Feeding Promoting NADH Production and Electron Transfer during Efficient SMX Biodegradation by a Denitrifier and S. oneidensis MR-1 in the Presence of Nitrate

ENVIRONMENTAL SCIENCE & TECHNOLOGY(2023)

引用 0|浏览6
暂无评分
摘要
Antibiotics often coexist with other pollutants (e.g., nitrate) in an aquatic environment, and their simultaneous biological removal has attracted widespread interest. We have found that sulfamethoxazole (SMX) and nitrate can be efficiently removed by the coculture of a model denitrifier (Paracoccus denitrificans, Pd) and Shewanella oneidensis MR-1 (So), and SMX degradation is affected by NADH production and electron transfer. In this paper, the mechanism of a coculture promoting NADH production and electron transfer was investigated by proteomic analysis and intermediate experiments. The results showed that glutamine and lactate produced by Pd were captured by So to synthesize thiamine and heme, and the released thiamine was taken up by Pd as a cofactor of pyruvate and ketoglutarate dehydrogenase, which were related to NADH generation. Additionally, Pd acquired heme, which facilitated electron transfer as heme, was the important composition of complex III and cytochrome c and the iron source of iron sulfur clusters, the key component of complex I in the electron transfer chain. Further investigation revealed that lactate and glutamine generated by Pd prompted So chemotactic moving toward Pd, which helped the two bacteria effectively obtain their required substances. Obviously, metabolite cross-feeding promoted NADH production and electron transfer, resulting in efficient SMX biodegradation by Pd and So in the presence of nitrate. Its feasibility was finally verified by the coculture of an activated sludge denitrifier and So.
更多
查看译文
关键词
metabolite cross-feeding,sulfamethoxazole,tandem mass tags quantification-based proteomics assay,chemotaxis,glutamine,thiamine,heme
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要