PIM1 phosphorylates ABI2 to enhance actin dynamics and promote tumor invasion

JOURNAL OF CELL BIOLOGY(2023)

引用 1|浏览9
暂无评分
摘要
Distinguishing key factors that drive the switch from indolent to invasive disease will make a significant impact on guiding the treatment of prostate cancer (PCa) patients. Here, we identify a novel signaling pathway linking hypoxia and PIM1 kinase to the actin cytoskeleton and cell motility. An unbiased proteomic screen identified Abl-interactor 2 (ABI2), an integral member of the wave regulatory complex (WRC), as a PIM1 substrate. Phosphorylation of ABI2 at Ser183 by PIM1 increased ABI2 protein levels and enhanced WRC formation, resulting in increased protrusive activity and cell motility. Cell protrusion induced by hypoxia and/or PIM1 was dependent on ABI2. In vivo smooth muscle invasion assays showed that overexpression of PIM1 significantly increased the depth of tumor cell invasion, and treatment with PIM inhibitors significantly reduced intramuscular PCa invasion. This research uncovers a HIF-1-independent signaling axis that is critical for hypoxia-induced invasion and establishes a novel role for PIM1 as a key regulator of the actin cytoskeleton. PIM1 kinase promotes prostate cancer invasion by directly phosphorylating ABI2, which increases WAVE regulatory complex activity and enhances actin dynamics to drive tumor cell protrusion. These findings represent the first signal transduction pathway linking hypoxia to the regulation of actin cytoskeletal dynamics and reveal PIM1 as a new target to opposing hypoxia-induced metastasis.
更多
查看译文
关键词
actin dynamics,abi2,tumor invasion
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要