Physiological characteristics and virulence gene composition of selected serovars of seafood-borne Salmonella enterica

VETERINARY WORLD(2023)

引用 1|浏览1
暂无评分
摘要
Background and Aim: All serotypes of Salmonella enterica are considered potentially pathogenic. However, the non -typhoidal Salmonella (NTS) serotypes vary considerably in terms of pathogenicity and the severity of infections. Although diverse serotypes of NTS have been reported from tropical seafood, their sources, physiological characteristics, and virulence potentials are not well understood. This study aimed to compare the physiological characteristics of selected serovars of Salmonella from seafood and investigate possible variations in the distribution of known genes within the pathogenicity islands.Materials and Methods: A series of biochemical tests, including carbohydrate fermentation and amino acid decarboxylation tests were performed to physiologically compare the isolates. The genetic characterization with respect to putative virulence genes was done by screening for genes associated with Salmonella pathogenicity island (SPI) I-V, as well as the toxin-and prophage-associated genes by polymerase chain reaction.Results: Irrespective of serotypes, all the isolates uniformly harbored the five SPIs screened in this study. However, some virulence genes, such as the avrA, sodC, and gogB were not detected in all Salmonella isolates. The biochemical profiles of Salmonella serotypes were highly conserved except for variations in inositol fermentation and citrate utilization. All the isolates of this study were weak biofilm formers on polystyrene surfaces.Conclusion: The pathogenicity profiles of environmental NTS isolates observed in this study suggest that they possess the virulence machinery necessary to cause human infections and therefore, urgent measures to contain Salmonella contamination of seafood are required to ensure the safety of consumers.
更多
查看译文
关键词
biofilm,invasion,non-typhoidal Salmonella,Salmonella pathogenicity islands,seafood,virulence
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要