Hippocampal subfield vulnerability to α-synuclein pathology precedes neurodegeneration and cognitive dysfunction

bioRxiv : the preprint server for biology(2023)

引用 1|浏览4
暂无评分
摘要
Cognitive dysfunction is a salient feature of Parkinson’s disease (PD) and Dementia with Lewy bodies (DLB). The onset of dementia reflects the spread of Lewy pathology throughout forebrain structures. The mere presence of Lewy pathology, however, provides limited indication of cognitive status. Thus, it remains unclear whether Lewy pathology is the de facto substrate driving cognitive dysfunction in PD and DLB. Through application of α-synuclein fibrils in vivo, we sought to examine the influence of pathologic inclusions on cognition. Following stereotactic injection of α-synuclein fibrils within the mouse forebrain, we measured the burden of α-synuclein pathology at 1-, 3-, and 6-months post-injection within subregions of the hippocampus and cortex. Under this paradigm, the hippocampal CA2/3 subfield was especially susceptible to α-synuclein pathology. Strikingly, we observed a drastic reduction of pathology in the CA2/3 subfield across time-points, consistent with the consolidation of α-synuclein pathology into dense somatic inclusions followed by neurodegeneration. Silver-positive degenerating neurites were observed prior to neuronal loss, suggesting that this might be an early feature of fibril-induced neurotoxicity and a precursor to neurodegeneration. Critically, mice injected with α-synuclein fibrils developed progressive deficits in spatial learning and memory. These findings support that the formation of α-synuclein inclusions in the mouse forebrain precipitate neurodegenerative changes that recapitulate features of Lewy-related cognitive dysfunction.
更多
查看译文
关键词
neurodegeneration
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要