Thermal and Radiation Stability in Nanocrystalline Cu

Nanomaterials(2023)

引用 0|浏览9
暂无评分
摘要
Nanocrystalline metals have presented intriguing possibilities for use in radiation environments due to their high grain boundary volume, serving as enhanced irradiation-induced defect sinks. Their promise has been lessened due to the propensity for nanocrystalline metals to suffer deleterious grain growth from combinations of irradiation and/or elevated homologous temperature. While approaches for stabilizing such materials against grain growth are the subject of current research, there is still a lack of central knowledge on the irradiation-grain boundary interactions in pure metals despite many studies on the same. Due to the breadth of available reports, we have critically reviewed studies on irradiation and thermal stability in pure, nanocrystalline copper (Cu) as a model FCC material, and on a few dilute Cu-based alloys. Our study has shown that, viewed collectively, there are large differences in interpretation of irradiation-grain boundary interactions, primarily due to a wide range of irradiation environments and variability in materials processing. We discuss the sources of these differences and analyses herein. Then, with the goal of gaining a more overarching mechanistic understanding of grain size stability in pure materials under irradiation, we provide several key recommendations for making meaningful evaluations across materials with different processing and under variable irradiation conditions.
更多
查看译文
关键词
copper,irradiation,nanocrystalline,stability
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要