Acrylamide induces the activation of BV2 microglial cells through TLR2/4-mediated LRRK2-NFATc2 signaling cascade.

Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association(2023)

引用 0|浏览5
暂无评分
摘要
Acrylamide (ACR), a potential neurotoxin, is generated from the Maillard reaction between reducing sugars and free amino acids during food processing. Our work focuses on clarifying the role of the leucine-rich repeat kinase 2 (LRRK2) and nuclear factor of activated T cells, cytoplasmic 2 (NFATc2) in the polarization of BV2 cells to the M1 proinflammatory type induced by ACR. Specifically, ACR promoted the phosphorylation of LRRK2 and NFATc2 in BV2 microglia. Furthermore, selectively phosphorylated LRRK2 by ACR induced nuclear translocation of NFATc2 to trigger a neuroinflammatory cascade. Knock-down of LRRK2 by silencing significantly diminished ACR-induced microglial neurotoxic effect with the decline of IL-1β, IL-6, and iNOS levels and the decrease of NFATc2 expression in BV2 cells. After pretreated with Toll-Like Receptor 2 (TLR2) and TLR4 inhibitors separately, both the activation of LRRK2 and the release of pro-inflammatory factors were inhibited in BV2 cells. Gallic acid (GA) is ubiquitous in most parts of the medicinal plant. GA alleviated the increased CD11b expression, IL-6 and iNOS levels induced by ACR in BV2 microglia. In conclusion, this study shows that ACR leads to the cascade activation of LRRK2-NFATc2 mediated by TLR2 and TLR4 to induce microglial toxicity.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要