Infection of Mouse Neural Progenitor Cells by Toxoplasma gondii Reduces Proliferation, Migration, and Neuronal Differentiation in Vitro.

Luiza B Pires, Maria C Peixoto-Rodrigues,Jéssica F Eloi, Cynthia M Cascabulho,Helene S Barbosa, Marcelo F Santiago,Daniel Adesse

The American journal of pathology(2023)

引用 2|浏览9
暂无评分
摘要
Congenital toxoplasmosis constitutes a major cause of pre- and postnatal complications. Fetal infection with Toxoplasma gondii influences development and can lead to microcephaly, encephalitis, and neurologic abnormalities. Systematic studies concerning the effects of neural progenitor cell infection with T. gondii are unavailable. Cortical intermediate progenitor cells cultivated as neurospheres obtained from E16.5 Swiss Webster mice were infected with T. gondii (ME49 strain) tachyzoites to mimic the developing mouse cerebral cortex in vitro. Infection was associated with decreased cell proliferation, detected by Ki-67 staining at 48 and 72 hours after infection in floating neurospheres, and reduced cellularity at 96 hours. Transient decreases in the expression of the neurogenesis-related transcription factors T-box brain protein 1, mouse atonal homolog protein 1, and hairy and enhancer of split protein 1 were found in infected cultures, while the level of transcription factor SOX-2 remained unaltered. Neurogenic potential, assessed in plated neurospheres, was impaired in infected cultures, as indicated by decreased late neuronal marker neurofilament heavy chain immunoreactivity. Infected cultures exhibited decreased overall migration rates at 48 and 120 hours. These findings indicate that T. gondii infection of neural progenitor cells may lead to reduced neurogenesis due to an imbalance in cell proliferation alongside an altered migratory profile. If translated to the in vivo situation, these data could explain, in part, cortical malformations in congenitally infected individuals.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要