Physiological dynamics as indicators of plant response to manganese binary effect

Frontiers in Plant Science(2023)

引用 0|浏览4
暂无评分
摘要
IntroductionHeavy metals negatively affect plant physiology. However, plants can reduce their toxicity through physiological responses. Broussonetia papyrifera is a suitable candidate tree for carrying out the phytoremediation of manganese (Mn)-contaminated soil. MethodsConsidering that Mn stress typically exerts a binary effect on plants, to reveal the dynamic characteristics of the physiological indexes of B. papyrifera to Mn stress, we conducted pot experiments with six different Mn concentrations (0, 0.25, 0.5, 1, 2, and 5 mmol/L) for 60 days. In addition to the chlorophyll content, malondialdehyde (MDA), proline (PRO), soluble sugar, superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), the absorption and transfer characteristics of Mn, and root structure were also measured. ResultsPhytoremedial potential parameters such as the bioconcentration factor (BCF) and translocation factor (TF) displayed an increasing trend with the increase of Mn concentration. At lower Mn concentrations (<0.5 mmol/L), the TF value was <1 but crossed 1 when the Mn concentration exceeded 100 mmol/L. The Mn distribution in various tissues was in the following order: leaf > stem > root. The root structure analysis revealed that low-level concentrations of Mn (1 mmol/L) promoted root development. Mn concentration and stress duration had significant effects on all measured physiological indexes, and except soluble sugar, Mn concentration and stress time displayed a significant interaction on the physiological indexes. DiscussionOur study demonstrates that the physiological indexes of B. papyrifera display dynamic characteristics under Mn stress. Thus, during the monitoring process of Mn stress, it appears to be necessary to appropriately select sampling parts according to Mn concentration.
更多
查看译文
关键词
Broussonetia papyrifera,physiological response,antioxidant enzyme,long-term stress,heavy metal
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要