TACOS: Topology-Aware Collective Algorithm Synthesizer for Distributed Machine Learning

William Won, Midhilesh Elavazhagan,Sudarshan Srinivasan, Ajaya Durg, Samvit Kaul,Swati Gupta,Tushar Krishna

arxiv(2023)

引用 0|浏览11
暂无评分
摘要
The surge of artificial intelligence, specifically large language models, has led to a rapid advent towards the development of large-scale machine learning training clusters. Collective communications within these clusters tend to be heavily bandwidth-bound, necessitating techniques to optimally utilize the available network bandwidth. This puts the routing algorithm for the collective at the forefront of determining the performance. Unfortunately, communication libraries used in distributed machine learning today are limited by a fixed set of routing algorithms. This constraints collective performance within the domain of next-generation training clusters that employ intricate, heterogeneous, and asymmetric, large-scale topologies. Further, the emergence of irregular topologies attributed to runtime phenomena such as device failures serves to compound the complexity of the challenge. To this end, this paper introduces TACOS, an automated synthesizer that generates topology-aware collective algorithms for common distributed machine learning collectives across arbitrary input network topologies. TACOS was able to synthesize All-Reduce algorithm for a heterogeneous 512-NPU system in just 6.09 minutes while achieving performance improvement up to 4.27x over state-of-the-art prior work. TACOS exhibits high scalability, with synthesis time scaling quadratically with the number of NPUs. In contrast to prior works' NP-hard approaches, TACOS with 40K NPUs completes in 2.52 hours.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要