Modeling inductive radio frequency coupling in powerful negative hydrogen ion sources: optimizing the RF coupling

arXiv (Cornell University)(2023)

引用 0|浏览8
暂无评分
摘要
In the fusion experiment ITER powerful neutral beam injection (NBI) systems will be used. The NBI's core component is a negative hydrogen ion source, which is based on a modular concept. Eight cylindrical drivers, each having a volume of several liters, are attached to one common expansion and extraction region. Within the drivers an inductively coupled plasma is sustained by an external cylindrical coil at filling pressures not larger than 0.3 Pa. Radio frequency (RF) generators operating at a driving frequency of 1 MHz feed the coils via a matching network with powers of up to 100 kW per driver. These high powers entail high voltages, which make the ion source prone to electrical breakdowns and arcing, wherefore its reliability is reduced. Moreover, at the ITER prototype RF ion source not more than 60% of the power is absorbed by the plasma, whereas the rest is lost for heating the RF coil and conducting structures of the driver. To optimize the power coupling in the prototype source, a previously validated self-consistent fluid-electromagnetic model is applied. The optimization studies reveal a complex interplay between network losses (mainly caused by the skin effect and eddy currents), and nonlinear plasma phenomena, such as the RF Lorentz force. The model demonstrates promising optimization concepts for the RF coupling in future NBI ion sources. In particular, by increasing the axial driver length and the driving frequency it is possible to enhance the fraction of absorbed power to values around 90%.
更多
查看译文
关键词
inductive radio frequency coupling,powerful coupling,hydrogen ion sources
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要