Geometry of Rounding: Near Optimal Bounds and a New Neighborhood Sperner's Lemma

CoRR(2023)

引用 0|浏览0
暂无评分
摘要
A partition $\mathcal{P}$ of $\mathbb{R}^d$ is called a $(k,\varepsilon)$-secluded partition if, for every $\vec{p} \in \mathbb{R}^d$, the ball $\overline{B}_{\infty}(\varepsilon, \vec{p})$ intersects at most $k$ members of $\mathcal{P}$. A goal in designing such secluded partitions is to minimize $k$ while making $\varepsilon$ as large as possible. This partition problem has connections to a diverse range of topics, including deterministic rounding schemes, pseudodeterminism, replicability, as well as Sperner/KKM-type results. In this work, we establish near-optimal relationships between $k$ and $\varepsilon$. We show that, for any bounded measure partitions and for any $d\geq 1$, it must be that $k\geq(1+2\varepsilon)^d$. Thus, when $k=k(d)$ is restricted to ${\rm poly}(d)$, it follows that $\varepsilon=\varepsilon(d)\in O\left(\frac{\ln d}{d}\right)$. This bound is tight up to log factors, as it is known that there exist secluded partitions with $k(d)=d+1$ and $\varepsilon(d)=\frac{1}{2d}$. We also provide new constructions of secluded partitions that work for a broad spectrum of $k(d)$ and $\varepsilon(d)$ parameters. Specifically, we prove that, for any $f:\mathbb{N}\rightarrow\mathbb{N}$, there is a secluded partition with $k(d)=(f(d)+1)^{\lceil\frac{d}{f(d)}\rceil}$ and $\varepsilon(d)=\frac{1}{2f(d)}$. These new partitions are optimal up to $O(\log d)$ factors for various choices of $k(d)$ and $\varepsilon(d)$. Based on the lower bound result, we establish a new neighborhood version of Sperner's lemma over hypercubes, which is of independent interest. In addition, we prove a no-free-lunch theorem about the limitations of rounding schemes in the context of pseudodeterministic/replicable algorithms.
更多
查看译文
关键词
near optimal bounds,rounding,lemma,sperner
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要