Sustainable Edge Computing: Challenges and Future Directions


引用 0|浏览3
An increasing amount of data is being injected into the network from IoT (Internet of Things) applications. Many of these applications, developed to improve society's quality of life, are latency-critical and inject large amounts of data into the network. These requirements of IoT applications trigger the emergence of Edge computing paradigm. Currently, data centers are responsible for a global energy use between 2% and 3%. However, this trend is difficult to maintain, as bringing computing infrastructures closer to the edge of the network comes with its own set of challenges for energy efficiency. In this paper, we propose our approach for the sustainability of future computing infrastructures to provide (i) an energy-efficient and economically viable deployment, (ii) a fault-tolerant automated operation, and (iii) a collaborative resource management to improve resource efficiency. We identify the main limitations of applying Cloud-based approaches close to the data sources and present the research challenges to Edge sustainability arising from these constraints. We propose two-phase immersion cooling, formal modeling, machine learning, and energy-centric federated management as Edge-enabling technologies. We present our early results towards the sustainability of an Edge infrastructure to demonstrate the benefits of our approach for future computing environments and deployments.
AI 理解论文