Graph MLP-Mixer

ICLR 2023(2023)

引用 0|浏览43
暂无评分
摘要
Graph Neural Networks (GNNs) have shown great potential in the field of graph representation learning. Standard GNNs define a local message-passing mechanism which propagates information over the whole graph domain by stacking multiple layers. This paradigm suffers from two major limitations, over-squashing and poor long-range dependencies, that can be solved using global attention but significantly increases the computational cost to quadratic complexity. In this work, we consider an alternative approach to overcome these structural limitations while keeping a low complexity cost. Motivated by the recent MLP-Mixer architecture introduced in computer vision, we propose to generalize this network to graphs. This GNN model, namely Graph MLP-Mixer, can make long-range connections without over-squashing or high complexity due to the mixer layer applied to the graph patches extracted from the original graph. As a result, this architecture exhibits promising results when comparing standard GNNs vs. Graph MLP-Mixers on benchmark graph datasets.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要