Comparison of antimicrobial resistance among Salmonella enterica serovars isolated from Canadian turkey flocks, 2013 to 2021.

Poultry science(2023)

引用 0|浏览4
暂无评分
摘要
The emergence of antimicrobial resistance (AMR) in Salmonella from turkeys has raised a food safety concern in Canada as certain serovars have been implicated in human salmonellosis outbreaks in recent years. While several studies evaluated AMR in broiler chickens in Canada, there are limited studies that assess AMR in turkey flocks. This study analyzed data collected between 2013 and 2021 by the Canadian Integrated Program for Antimicrobial Resistance Surveillance (CIPARS) farm turkey surveillance program to determine the prevalence of AMR and differences in resistance patterns among Salmonella serovars recovered from turkey flocks. Salmonella isolates were tested for susceptibility to 14 antimicrobials using a microbroth dilution method. Hierarchical clustering dendrograms were constructed to compare the individual AMR status of Salmonella serovars. Differences in the probability of resistance between Salmonella serovars were determined using generalized estimating equation logistic regression models to account for farm-level clustering. Of the 1,367 Salmonella isolates detected, 55.3% were resistant to at least one antimicrobial and 25.3% were multidrug resistant (MDR) (resistant to ≥3 antimicrobial classes). The Salmonella isolates exhibited high resistance to tetracycline (43.3%), streptomycin (47.2%), and sulfisoxazole (29.1%). The 3 most frequently occurring serovars were S. Uganda (22.9%), S. Hadar (13.5%), and S. Reading (12.0%). Streptomycin-sulfisoxazole-tetracycline (n = 204) was the most frequent MDR pattern identified. Heatmaps showed that S. Reading exhibited coresistance to the quinolone class antimicrobials, ciprofloxacin, and nalidixic acid; S. Heidelberg to gentamicin and sulfisoxazole; and S. Agona to ampicillin and ceftriaxone. Salmonella Hadar isolates had higher odds of resistance to tetracycline (OR: 152.1, 95% CI: 70.6-327.4) while the probability of being resistant to gentamicin and ampicillin was significantly higher in S. Senftenberg than in all the other serovars. Moreover, S. Uganda had the highest odds of being MDR (OR: 4.7, 95% CI: 3.7-6.1). The high resistance observed warrants a reassessment of the drivers for AMR, including AMU strategies and other production factors. Differences in AMR patterns highlight the need to implement serovar-specific mitigation strategies.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要