Laboratory studies of ship hull’s material degradation scenarios to optimize a cathodic protection modelling software

npj Materials Degradation(2023)

引用 0|浏览2
暂无评分
摘要
This work presents the experimental research carried out to optimize a current computational software “CorOns”, to obtain a better ship hull electrical signature modelling. Middle-term ageing (597 days) of anticorrosion paints, highlights the appearance of additional corrosion processes, despite an absence of visual defects. A specific model is proposed for an aged surface in seawater based on Electrochemical Impedance Spectroscopy (“EIS”) data analysis. We also investigate the impact of the interruption of cathodic protection on the corrosion process, with the objective of modelling the electrical signature in real conditions that could be encountered. These studies’ interruption of the cathodic protection during 24 h, do not seem to have an impact on the current densities. However, EIS studies, highlight that the protection interruptions damage the calcareous deposit, well-known for it is protective effect once formed.
更多
查看译文
关键词
Engineering,Materials science,Materials Science,general,Tribology,Corrosion and Coatings,Structural Materials,Electrochemistry
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要