Synergistic Catalysis at the Ni/ZrO2-x Interface toward Low-Temperature CO2 Methanation.

ACS applied materials & interfaces(2023)

引用 3|浏览0
暂无评分
摘要
The CO2 methanation reaction, which achieves the carbon cycle and gains value-added chemicals, has attracted much attention, but the design and exploitation of highly active catalysts remain a big challenge. Herein, zirconium dioxide-supported Ni catalysts toward low-temperature CO2 methanation are obtained via structural topological transformation of NiZrAl-layered double hydroxide (LDH) precursors, which have the feature of an interfacial structure (Ni-O-Zr3+-Vö) between Ni nanoparticles and ZrO2-x support (0 < x < 1). The optimized catalyst (Ni/ZrO2-x-S2) exhibits exceptional CO2 conversion (∼72%) at a temperature as low as 230 °C with a ∼100% selectivity to CH4, without obvious catalyst deactivation within a 110 h reaction at a high gas hourly space velocity of 30,000 mL·g-1·h-1. Markedly, the space-time yield of CH4 reaches up to ∼0.17 molCH4·gcat-1·h-1, which is superior to previously reported Ni catalysts evaluated under similar reaction conditions. Both in situ/operando investigations (diffuse reflectance infrared Fourier transform spectroscopy and X-ray absorption fine structure) and catalytic evaluations substantiate the interfacial synergistic catalysis at the Ni/ZrO2-x interface: the Zr3+-Vö facilitates the activation adsorption of CO2, while the H2 molecule experiences dissociation at the metallic Ni sites. This work demonstrates that the metal-support interface effect plays a key role in improving the catalytic behavior toward CO2 methanation, which can be extended to other high-performance heterogeneous catalysts toward structure-sensitive systems.
更多
查看译文
关键词
synergistic catalysis,ni/zro<sub>2–<i>x</i></sub>,ni/zro<sub>2–<i>x</i></sub>,low-temperature
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要