Dipicolinic acid enhances kiwifruit resistance to Botrytis cinerea by promoting phenolics accumulation

Pest Management Science(2023)

引用 1|浏览1
暂无评分
摘要
BACKGROUNDKiwifruit is highly susceptible to fungal pathogens, such as Botrytis cinerea, which reduce crop production and quality. In this study, dipicolinic acid (DPA), which is one of the main components of Bacillus spores, was evaluated as a new elicitor to enhance kiwifruit resistance to B. cinerea. RESULTSDPA enhances antioxidant capacity and induces the accumulation of phenolics in B. cinerea-infected 'Xuxiang' kiwifruit. The contents of the main antifungal phenolics in kiwifruit, including caffeic acid, chlorogenic acid and isoferulic acid, increased after DPA treatment. DPA enhanced H2O2 levels after 0 and 1 days, which promoted catalase (CAT) and superoxide dismutase (SOD) activities, reducing long-term H2O2 levels. DPA promoted the up-regulation of several kiwifruit defense genes, including CERK1, MPK3, PR1-1, PR1-2, PR5-1 and PR5-2. Furthermore, DPA at 5 mM inhibited B. cinerea symptoms in kiwifruit (95.1% lesion length inhibition) more effectively than the commercial fungicides carbendazim, difenoconazole, prochloraz and thiram. CONCLUSIONSThe antioxidant properties of DPA and the main antifungal phenolics of kiwifruit were examined for the first time. This study uncovers new insights regarding the potential mechanisms used by Bacillus species to induce disease resistance. (c) 2023 Society of Chemical Industry.
更多
查看译文
关键词
dipicolinic acid
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要