The impact of shape and attachment position of biologging devices in Northern Bald Ibises

Ortal Mizrahy-Rewald, Natalie Winkler,Frederik Amann, Katharina Neugebauer,Bernhard Voelkl, Herwig A. Grogger, Thomas Ruf,Johannes Fritz

ANIMAL BIOTELEMETRY(2023)

引用 1|浏览8
暂无评分
摘要
BackgroundThe impact of biologging devices on the aerodynamics or hydrodynamics of animals is still poorly understood. This stands in marked contrast to the ever more extensive use of such technologies in wild-living animals. Recently, increasing concerns have been raised about the impairing effects of these devices on the animals concerned. In the early days of biotelemetry, attention was focused solely on reducing weight, but now aerodynamic effects are also increasingly being considered. To investigate these effects, we trained Northern Bald Ibises to fly in a wind tunnel in which we measured heart rate and dynamic body acceleration (VeDBA) as proxies for energy expenditure in relation to different logger shapes and wind flow directions.ResultsOur data provide evidence that the position of biologging devices significantly influence the flight distances, and the shape of biologging devices has a considerable effect on heart rate and VeDBA, both of which have been used as proxies for energy expenditure. Unfavorable shape and positioning go beyond merely affecting the effort required during flapping flight. The energetically probably more important effect is that the devices impair the bird's ability to glide or soar and thus force them to perform the energetically much more demanding flapping flight more frequently. This effect was more pronounced in rising air than in horizontal airflow. A complementary study with wild Northern Bald Ibises during spring migration provides evidence that the position of the devices on the bird's back affects the length of the flight stages. Birds carrying the devices on the upper back, fixed by wing-loop harnesses, had significantly shorter flight stages compared to birds with a more caudally positioned device, fixed by leg-loop harnesses.ConclusionThe attachment of biologging devices on birds affects their performance and behavior and thus may influence their fitness and mortality. Our results show that detrimental effects can be reduced with relatively little effort, in particular through a strictly aerodynamic design of the housing and increased consideration of aerodynamics when attaching the device to the body. In birds, the attachment of biologging devices via leg loops to the lower back is clearly preferable to the common attachment via wing loops on the upper back, even if this affects the efficiency of the solar panels. Nevertheless, the importance of drag reduction may vary between systems, as the benefits of having a biologging devices close to the center of gravity may outweigh the increase in drag that this involves. Overall, more research is required in this field. This is both in the interest of animal welfare and of avoiding biasing the quality of the collected data.
更多
查看译文
关键词
Aerodynamic,Biologging,Heart rate,VeDBA,Wind tunnel,Harness,Flight performance
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要