Applicability of the gape monitor to study flat oyster (Ostrea edulis) feeding behaviour

AQUATIC LIVING RESOURCES(2023)

引用 1|浏览3
暂无评分
摘要
Innovative techniques are needed to assess oyster performance in flat oyster reef restoration projects. A valve gape monitor, a device that continuously measures opening and closing of live bivalves, can potentially be used as an effective method to determine survival and behaviour of the European flat oyster Ostrea edulis. The method has been successfully used in combination with a number of bivalve species to investigate valve gape activity in response to environmental factors. In this study, eight O. edulis were equipped with valve gape sensors in order to relate gape to environmental conditions such as food availability. Valve gape activity was monitored under controlled laboratory conditions, with and without food, in a concrete basin in the Oosterschelde and in the field (Voordelta, Dutch North Sea). Under controlled laboratory conditions, oysters clearly responded to changes in food availability. Starved oysters closed their valves significantly longer than oysters that received food, and the relative gape width in fed oysters was larger. In the concrete basin (Oosterschelde), a positive correlation between valve opening and Chlorophyll-a was found. Additionally, valve gape activity and tidal movement appeared to be linked. When exposed to a full tidal cycle (Voordelta), a negative correlation between valve opening and Chlorophyll-a was found. However, there was no correlation between valve gape and current velocity. In autumn, longer periods of inactivity were seen, but when valves opened, the valve gape was larger. These data indicate that valve gape can provide valuable information on behaviour (gape frequency and gape width), but also show that it is not necessarily a good proxy for feeding rate. Nevertheless, these results show that the gape monitor can be used to determine the natural behaviour of flat oysters under field conditions, and that gape opening provides information on behaviour and the stress response of bivalves to environmental conditions.
更多
查看译文
关键词
Ostrea edulis,oyster reef restoration,North Sea,valve gape monitor,Voordelta
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要