Formation of Composite Coatings during Detonation Spraying of Cr3C2

JOURNAL OF COMPOSITES SCIENCE(2023)

引用 0|浏览2
暂无评分
摘要
In the current practice of applying carbide-based coatings by thermal spraying, the starting material usually contains a metal binder. However, it is important to study the possibility of spraying binder-free carbides, since the metal components usually reduce the operating temperature and corrosion resistance of cermet coatings. In this work, a powder of chromium carbide, Cr3C2, was sprayed using a CCDS2000 detonation gun. Acetylene-oxygen mixtures C2H2 + kO(2) with k varying from 0.8 to 3.0 were used as an energetic material. Due to chemical reactions between Cr3C2 and the detonation products, the coatings were of composite nature (multi-phase materials) with a composition depending on k. At k values in the range from 0.8 to 1.1, along with Cr3C2, the coatings contained chromium carbonitride Cr3N0.4C1.6. In the k range from 1.3 to 2.0, Cr7C3 and Cr were the main components of the coatings. As k was increased to 3.0, along with Cr7C3 and Cr, the CrO and Cr2O3 oxides formed in the coatings. The mechanical properties and wear resistance of the coatings were found to depend on their phase compositions. Coatings produced by detonation spraying of Cr3C2 powder may be useful for increasing the corrosion resistance of machine parts to mineral acids and high-temperature oxidation resistance.
更多
查看译文
关键词
detonation spraying,acetylene-oxygen mixture,chromium carbide,composite coating,microhardness,bond strength,abrasive wear,residual stresses
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要