Dielectric properties of nano-MMT and graphene quantum dots embedded poly (vinylidene fluoride-co-hexafluoropropylene) nanocomposite films

JOURNAL OF APPLIED POLYMER SCIENCE(2023)

引用 2|浏览1
暂无评分
摘要
In this work, montmorillonite (MMT) nanoclay and graphene quantum dots (GQDs) embedded poly (vinylidenefluoride-co-hexafluoropropylene) (PVDF-HFP) nanocomposite films were prepared using the solution-casting technique and characterized using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Scanning electron microscopy (SEM) and Atomic force microscopy (AFM). The thermal, mechanical and dielectric properties of PVDF-HFP/MMT/GQDs nanocomposite films were also investigated. The dielectric constant (e ' ), dielectric loss (e '' ) and conductivity (sigma) of synthesized nanocomposite films were evaluated in the frequency and temperature range f100 Hz-1 MHz and 30-150 C, respectively. The highest e ' with relatively high e '' was achieved at low frequency for increasing temperature for all the nanocomposite films. The conductivity results showed good increment from lower to higher frequency up to 100 kHz at increasing temperature. The Cole-Cole plots represent the complex impedance of PVDF-HFP/MMT/GQDs nanocomposites at 150 C. The attained results imply that the PVDF-HFP/MMT/GQDs nanocomposite films can be useful candidates for flexible electronic devices.
更多
查看译文
关键词
dielectric properties,GQDs,nanoclay,PVDF-HFP,solution casting
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要