Bamboo-derived hydrophobic porous graphitized carbon for adsorption of volatile organic compounds

CHEMICAL ENGINEERING JOURNAL(2023)

引用 9|浏览10
暂无评分
摘要
Biomass-derived activated carbons (BACs) are often used as green adsorbents for the removal of VOCs, however, their abundant surface functional groups severely reduced their adsorption selectivity under humid conditions. In this study, hydrophobic bamboo-derived porous graphitized carbons (BPGCs) were prepared using a combined catalytic graphitization method. The optimal micro-mesoporous BPGC had a large specific surface area of 2181 m2/g and a low surface O/C ratio of 0.038. Under dry conditions, its adsorption capacities for toluene, cyclo-hexane and ethanol were 6.7, 3.8 and 2.4 mmol/g, respectively. At 80 % relative humidity, its adsorption ca-pacities for toluene and cyclohexane remained 82 % and 66 %, while the uptake of ethanol even increased by 33 %. In the two-component adsorption test, BPGC showed a high selectivity for toluene adsorption over ethanol, with 198 times more toluene than ethanol. The adsorption mechanism at the microscopic molecular level was revealed by DFT calculation. The abundant pi electrons and high polarizability of BPGC allow for strong pi-pi interactions and dispersion forces with non-polar organics, while the abundant oxygen-containing groups on BAC have strong adsorption force on water. The absorption of ethanol by capillary condensed water in mesopores of BPGC may contribute to its increased uptake under humid conditions. BPGC allowed for faster adsorption ki-netics than activated carbon. More than 90 % of the adsorbed toluene was desorbed from BPGC at 90 degrees C. Owing to abundant renewable raw materials, excellent hydrophobicity and desirable textural properties, BPGCs may be promising adsorbents.
更多
查看译文
关键词
Biomass,Biochar,Porous graphitized carbon,Adsorption,Volatile organic compounds,DFT calculation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要