Bringing Quantum Mechanics to Coarse-Grained Soft Materials Modeling

CHEMISTRY OF MATERIALS(2023)

引用 4|浏览3
暂无评分
摘要
Fundamental knowledge gaps are endemic in our understanding of how emergent properties of soft materials are linked to the quantum mechanical (QM) world. The limitations of current QM modeling paradigms inhibit the understanding and design of classes of soft materials for which QM phenomenology is critical. At its root, these limitations derive from the seemingly innocuous premise of requiring all atomic positions to solve the molecular Schrodinger equation, which necessitates supercomputing resources to incorporate even simple QM phenomenology into small (similar to nm) systems of soft materials. Here, we review emerging efforts to overcome these challenges through the development of electronic prediction models that operate at the coarse-grained resolution. We motivate the origins of this new computational paradigm, denoted electronic coarse-graining (ECG), discuss its relationship to existing molecular modeling frameworks, and describe recent successes of ECG and related models for soft materials. Importantly, we highlight the classes of soft materials where ECG models can be potentially transformative.
更多
查看译文
关键词
quantum mechanics,materials,modeling,coarse-grained
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要