Improving the accuracy of bathymetry using the combined neural network and gravity wavelet decomposition method with altimetry derived gravity data

MARINE GEODESY(2023)

引用 1|浏览17
暂无评分
摘要
The wide range of bathymetry models can be estimated using the marine gravity information derived from satellite altimetry. However, due to nonlinear factors influences such as isostasy effects, the bathymetry estimated by gravity anomaly and vertical gravity gradient is not satisfactory. Therefore, to improve the accuracy of bathymetry estimation, a combined neural network and gravity information wavelet decomposition (CNNGWD) method is proposed based on wavelet decomposition and correlation analysis. Next, the bathymetry of the Manila Trench area is estimated using the CNNGWD method and multilayer neural network (MNN) method, respectively. Then, the shipborne sounding data and international bathymetric models such as ETOPO1 and GEBCO_2021 are separately used to evaluate the accuracy of the inversion models. The results show that the root mean square errors (RMSE) of the difference between the bathymetric model one (BM1) estimated by CNNGWD method and the shipborne sounding data is 59.90 m, the accuracy is improved by 12.45%, 64.70% and 28.68% compared with the bathymetric model two (BM2) which estimated by MNN, ETOPO1 and GEBCO, respectively. Finally, by analyzing the bathymetric accuracy shift with depth, the BM1 has lower RMSE at depths ranging from 1000 m to 3000 m. Furthermore, BM1 shows dominance in flat troughs and rugged ridge regions.
更多
查看译文
关键词
Bathymetric model,CNNGWD method,marine gravity anomaly,satellite altimetry,vertical gravity gradient
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要