Microstructural and mechanical property evolution of a nuclear zirconium-4 alloy fabricated via laser powder bed fusion and annealing heat treatment

VIRTUAL AND PHYSICAL PROTOTYPING(2023)

引用 0|浏览8
暂无评分
摘要
Zirconium (Zr) alloys are widely used in nuclear energy because of their excellent mechanical properties and low thermal neutron absorption cross-section. This work investigated the printability, microstructure, and mechanical properties of Zr-4 alloy additively manufactured by laser powder bed fusion (LPBF) for the first time. The effect of annealing temperature on the microstructural and the mechanical property evolution of the printed Zr-4 alloy was studied. The results exhibited that the Zr-4 alloy with a high relative density of 99.77% was obtained using optimised printing parameters. With an increase in the annealing temperature, the formed alpha phase of the Zr-4 alloy changed from an acicular shape to a coarse-twisted shape, and finally to an equiaxed shape. Such microstructure change endowed the alloy with a high compressive strength of 2130 MPa and compressive strain of 36%. When the annealing temperature exceeded 700 degrees C, Zr (x) (Fe2Cr) compounds were precipitated, strengthening the alloy by pinning effect. These findings provide valuable guidance for the manufacture of geometrically complex Zr alloy parts for nuclear power applications.
更多
查看译文
关键词
Zirconium alloy,Zr-4,additive manufacturing,laser powder bed fusion,annealing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要