Growth phase diagram and X-ray excited luminescence properties of NaLuF4:Tb3+nanoparticles

Linyuan Zhang, Fanyuan Xu, Tingwei Lei,Xiaofeng Zhang,Bin Lan, Tuo Li, Jian Yu,Hongbing Lu,Wenli Zhang

ARABIAN JOURNAL OF CHEMISTRY(2023)

引用 4|浏览5
暂无评分
摘要
X-rays are energy sources exhibiting extended penetration depths, and they have attracted increasing attention in industry and for clinical application. With the rapid development of nanomaterials and X-ray excited luminescent nanoparticles (XLNPs), new modalities for bioimaging and cancer therapy have been developed, such as X-ray luminescent computed tomog-raphy (XLCT) and X-ray excited photodynamic therapy (X-PDT). To meet the requirements of biomedical applications, XLNPs must exhibit high luminescence intensities, appropriate size distri-butions (less than100 nm) and negligible cytotoxicity. Due to the optical properties associated with f-electrons, rear earth (RE) elements are highly suitable for creating XLNPs. NaREF4 nanoparticles (NPs) have been shown to be suitable hosts with high luminescence intensities, controllable sizes, and biocompatibility for X-ray-based biomedical applications. Syntheses of NaLuF4 NPs doped with rare earth elements for upconversion applications have been systematically studied. However, for X-ray excited applications, the doping levels of the NPs must be totally different, which greatly affects the morphologies and sizes of the NaLuF4 NPs. Thus, in this paper, nucleation, phase tran-sitions, morphologies and sizes, and luminescence properties of Tb3+-doped NaLuF4 NPs were sys-tematically studied. OA-capped NaLuF4:Tb3+ NPs were synthesized via coprecipitation processes with different reaction temperatures and reaction times to study the nucleation mechanism system-atically, and the morphologies, size distributions and crystal phases were characterized with TEM and XRD. The morphologies, size distributions and crystal phases of these NPs were seriously influ- enced by the reaction temperature and reaction time. At 295 degrees C, the NP sizes increased with pro-longed reaction time, and the crystalline phase was a mixture of cubic and hexagonal phases. At 300 degrees C and 310 degrees C, the pure hexagonal phase was obtained after 20 min and 35 min reaction times, respectively. The luminescence strengths of these NPs were associated with the particle sizes, crys-talline phases, and Tb3+ doping levels. Stronger luminescence was achieved with larger particle sizes and purer hexagonal crystal phases. In addition, the 15 % doping level for Tb3+ provided the maximum luminescence intensity. The present work provides insights into the mechanism of NaLuF4:Tb3+ nanocrystal growth.(c) 2023 Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
更多
查看译文
关键词
X-ray excited optical lumi-nescence,Growth phase diagram,NaLuF4,Tb,X-ray Excited luminescent nanoparticles
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要