Tailoring Anion Association Strength Through Polycation-Anion Coordination Mechanism in Imidazole Polymeric Ionic Liquid-Based Artificial Interphase toward Durable Zn Metal Anodes

ADVANCED FUNCTIONAL MATERIALS(2023)

引用 5|浏览5
暂无评分
摘要
Artificial interface layer engineering is an efficacious modification strategy for protecting zinc anode from dendrite growth and byproducts formation. However, the high bulk ionic conductivity of most artificial interfacial layers is mainly contributed by the movement of anions (SO42-), which is the source of parasitic reactions on zinc anode. Herein, a high zinc ion donor transition (sigma Zn2+ = 3.89 x 10(-2) S cm(-1)) imidazole polymeric ionic liquid interface layer (1-carboxymethyl-3-vinylimidazolium bromide monomer, CVBr) for Zn metal protection is designed. The N+ atom of imidazole rings is connected by chains to form the cavities and the anions are confined within these cavities. Thus, the hindering effect of surrounding units on the anions leads to the subdiffusive regime, which inhibits the diffusion of SO42- in interface and increases Zn2+ transference number. Besides, the polycation-anion coordination mechanism of PolyCVBr ensures accelerated Zn2+ transition and realizes rapid internal Zn2+ migration channel. As a result, the Zn@CVBr||AM symmetry cells deliver high bulk ionic conductivity (4.42 x 10(-2) S cm(-1)) and high Zn2+ transference number (tZn(2+) = 0.88) simultaneously. The Zn@CVBr||AM-NaV3O8 pouch cells display the capacity retention of 88.9% after 190 cycles under 90 degrees bending, verifying their potential practical application.
更多
查看译文
关键词
fast ions transport,high Zn2+ donor transition,polycation-anion coordination mechanisms,polymeric ionic liquids,Zn metal anodes
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要