Copper overload impairs hematopoietic stem and progenitor cell proliferation via prompting HSF1/SP1 aggregation and the subsequently downregulating FOXM1-Cytoskeleton axis

iScience(2023)

引用 2|浏览0
暂无评分
摘要
Unbalanced Cu homeostasis has been suggested to be associated with hematopoietic disease, but the roles of Cu overload in the hematopoietic system and the potential mechanisms are obscure. Here, we report a novel association and the novel potential pathways for Cu overload to induce proliferation defects in zebrafish embryonic hematopoietic stem and progenitor cells (HSPCs) via down-regulating expression of foxm1-cytoskeleton axis, which is conserved from fish to mammals. Mechanistically, we show the direct binding of Cu to transcriptional factors HSF1 and SP1 and that Cu overload induces the cytoplasmic aggregation of proteins HSF1 and SP1. These result in the reduced transcriptional activities of HSF1 and SP1 on their downstream FOXM1 as well as the FOXM1 transcriptional activities on cytoskeletons in HSPCs, which leads to ultimately cell proliferation impairment. These findings unveil the novel linkage of Cu over-load with specific signaling transduction as well as the subsequent HSPC proliferation defects.
更多
查看译文
关键词
hematopoietic stem,copper,progenitor cell proliferation,cell proliferation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要