Quantitative MRI identifies lesional and non-lesional abnormalities in MOGAD.

Multiple sclerosis and related disorders(2023)

引用 0|浏览1
暂无评分
摘要
BACKGROUND:Myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) is a distinct central nervous system (CNS) disorder that shares features with multiple sclerosis (MS) and may be misdiagnosed as MS. MOGAD and MS share a frequently relapsing clinical course and lesions with inflammatory demyelinating pathology. One key feature of MS pathology is tissue damage in normal-appearing white matter (NAWM) outside of discrete lesions, whereas the extent to which similar non-lesional damage occurs in MOGAD is not known and could be assessed using qGRE. The goal of this study was to examine the brains of people with MOGAD using quantitative gradient-recalled echo (qGRE) magnetic resonance imaging and to compare tissue damage with MS patients matched for disability. METHODS:MOGAD and MS patients were recruited to match in terms of age and disability. Similarly aged healthy control (HC) data were drawn from existing studies. qGRE brain imaging of HC (N = 15), MOGAD (N = 17), and MS (N = 15) patients was used to examine the severity and extent of tissue damage within and outside of discrete lesions. The qGRE metric R2t* is sensitive to changes in tissue microstructure and was measured in white matter lesions (WMLs), NAWM, cortical (CGM) and deep gray matter (DGM). Statistical inference was performed with linear models. RESULTS:R2t* was reduced in CGM (p = 0.00047), DGM (p = 0.0055) and NAWM (p = 0.0019) in MOGAD and MS compared to similar regions in age-matched HCs. However, the degree of R2t* reduction in all these regions was less in the MOGAD patients compared with MS. WMLs in MOGAD demonstrated reduced R2t* compared to NAWM but this reduction was modest compared to changes associated with WMLs in MS (p = 0.026). CONCLUSION:These results demonstrate abnormalities in lesional and non-lesional CNS tissues in MOGAD that are not detectable on standard MRI. The abnormalities seen in NAWM, CGM, and DGM were less severe in MOGAD compared to MS. MOGAD-related WMLs showed reduced R2t*, but were less abnormal than WMLs in MS. These data reveal damage to non-lesional tissues in two different demyelinating diseases, suggesting that damage outside of WMLs may be a common feature of demyelinating diseases. The lesser degree of R2t* abnormality in MOGAD tissues compared to MS suggests less underlying tissue damage and may underlie the greater propensity for recovery in MOGAD.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要