Theoretical groundwork supporting the precessing-spin two-body dynamics of the effective-one-body waveform models SEOBNRv5

PHYSICAL REVIEW D(2023)

引用 0|浏览11
暂无评分
摘要
Waveform models are essential for gravitational-wave (GW) detection and parameter estimation of coalescing compact-object binaries. More accurate models are required for the increasing sensitivity of current and future GW detectors. The effective-one-body (EOB) formalism combines the post-Newtonian (PN) and small mass-ratio approximations with numerical-relativity results, and produces highly accurate inspiral-merger-ringdown waveforms. In this paper, we derive the analytical precessing-spin two-body dynamics for the SEOBNRv5 waveform model, which has been developed for the upcoming LIGO-VirgoKAGRA observing run. We obtain an EOB Hamiltonian that reduces to the exact Kerr Hamiltonian in the test-mass limit. It includes the full 4PN precessing-spin information, and is valid for generic compact objects (i.e., for black holes or neutron stars). We also build an efficient and accurate EOB Hamiltonian that includes partial precessional effects, notably orbit-averaged in-plane spin effects for circular orbits, and derive 4PN-expanded precessing-spin equations of motion, consistent with such an EOB Hamiltonian. The results were used to build the computationally efficient precessing-spin multipolar SEOBNRv5PHM waveform model.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要