Quantum decoherence of dark pulses in optical microresonators

Nature Communications(2023)

引用 1|浏览12
暂无评分
摘要
Quantum fluctuations disrupt the cyclic motions of dissipative Kerr solitons (DKSs) in nonlinear optical microresonators and consequently cause timing jitter of the emitted pulse trains. This problem is translated to the performance of several applications that employ DKSs as compact frequency comb sources. Recently, device manufacturing and noise reduction technologies have advanced to unveil the quantum properties of DKSs. Here we investigate the quantum decoherence of DKSs existing in normal-dispersion microresonators known as dark pulses. By virtue of the very large material nonlinearity, we directly observe the quantum decoherence of dark pulses in an AlGaAs-on-insulator microresonator, and the underlying dynamical processes are resolved by injecting stochastic photons into the microresonators. Moreover, phase correlation measurements show that the uniformity of comb spacing of quantum-limited dark pulses is better than 1.2 × 10 −16 and 2.5 × 10 −13 when normalized to the optical carrier frequencies and repetition frequencies, respectively. Comparing DKSs generated in different material platforms explicitly confirms the advantages of dark pulses over bright solitons in terms of quantum-limited coherence. Our work establishes a critical performance assessment of DKSs, providing guidelines for coherence engineering of chip-scale optical frequency combs.
更多
查看译文
关键词
Microresonators,Solitons,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要