Maize Ear Height and Ear-Plant Height Ratio Estimation with LiDAR Data and Vertical Leaf Area Profile.

Remote. Sens.(2023)

引用 2|浏览13
暂无评分
摘要
Ear height (EH) and ear-plant height ratio (ER) are important agronomic traits in maize that directly affect nutrient utilization efficiency and lodging resistance and ultimately relate to maize yield. However, challenges in executing large-scale EH and ER measurements severely limit maize breeding programs. In this paper, we propose a novel, simple method for field monitoring of EH and ER based on the relationship between ear position and vertical leaf area profile. The vertical leaf area profile was estimated from Terrestrial Laser Scanner (TLS) and Drone Laser Scanner (DLS) data by applying the voxel-based point cloud method. The method was validated using two years of data collected from 128 field plots. The main factors affecting the accuracy were investigated, including the LiDAR platform, voxel size, and point cloud density. The EH using TLS data yielded R-2 = 0.59 and RMSE = 16.90 cm for 2019, R-2 = 0.39 and RMSE = 18.40 cm for 2021. In contrast, the EH using DLS data had an R-2 = 0.54 and RMSE = 18.00 cm for 2019, R-2 = 0.46 and RMSE = 26.50 cm for 2021 when the planting density was 67,500 plants/ha and below. The ER estimated using 2019 TLS data has R-2 = 0.45 and RMSE = 0.06. In summary, this paper proposed a simple method for measuring maize EH and ER in the field, the results will also offer insights into the structure-related traits of maize cultivars, further aiding selection in molecular breeding.
更多
查看译文
关键词
ear height,ear-plant height ratio,TLS LiDAR,DLS LiDAR
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要