Development and evaluation of a hand exoskeleton for finger rehabilitation

ROBIO(2022)

引用 0|浏览18
暂无评分
摘要
Exoskeleton robots are now prevalent in hand rehabilitation medical training, and they can effectively drive a variety of rehabilitative movements in a hand that has lost its motor ability. To adapt to the hand's physiological structure and motion characteristics, a hybrid-driven exoskeleton hand based on tendon rope and linkage and its validation experiments are proposed in this paper. The exoskeleton hand can assist one to five fingers independently or even assist a joint alone. Wearing the robot retains the physiological touch of the hand to the maximum extent, which is beneficial to rehabilitation. In addition, patients can also carry out rehabilitation training independently, and the control mode is simple and practical. To verify whether the exoskeleton can reach the grip standard of healthy hands, the Leap Motion Controller is also used to conduct experimental verification of finger movement wearing the exoskeleton. The results show that the maximum average differences between the angles of the finger flexion motion joints (MCP and PIP) with and without the exoskeleton are 10.33 degrees and 11.06 degrees. It was verified that the exoskeleton could meet the requirements of finger flexion and extension for assisted motion within a specific error range.
更多
查看译文
关键词
hand exoskeleton,finger rehabilitation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要